彩票预测平台

  • <tr id='A2AHIJ'><strong id='A2AHIJ'></strong><small id='A2AHIJ'></small><button id='A2AHIJ'></button><li id='A2AHIJ'><noscript id='A2AHIJ'><big id='A2AHIJ'></big><dt id='A2AHIJ'></dt></noscript></li></tr><ol id='A2AHIJ'><option id='A2AHIJ'><table id='A2AHIJ'><blockquote id='A2AHIJ'><tbody id='A2AHIJ'></tbody></blockquote></table></option></ol><u id='A2AHIJ'></u><kbd id='A2AHIJ'><kbd id='A2AHIJ'></kbd></kbd>

    <code id='A2AHIJ'><strong id='A2AHIJ'></strong></code>

    <fieldset id='A2AHIJ'></fieldset>
          <span id='A2AHIJ'></span>

              <ins id='A2AHIJ'></ins>
              <acronym id='A2AHIJ'><em id='A2AHIJ'></em><td id='A2AHIJ'><div id='A2AHIJ'></div></td></acronym><address id='A2AHIJ'><big id='A2AHIJ'><big id='A2AHIJ'></big><legend id='A2AHIJ'></legend></big></address>

              <i id='A2AHIJ'><div id='A2AHIJ'><ins id='A2AHIJ'></ins></div></i>
              <i id='A2AHIJ'></i>
            1. <dl id='A2AHIJ'></dl>
              1. <blockquote id='A2AHIJ'><q id='A2AHIJ'><noscript id='A2AHIJ'></noscript><dt id='A2AHIJ'></dt></q></blockquote><noframes id='A2AHIJ'><i id='A2AHIJ'></i>

                Chaotic behavior of hyperbolic dynamical systems

                发布者:文明办作者:发布时间:2021-12-10浏览次数:10

                  

                主讲人:连增  四【川大学教授

                  

                时间:2021年12月13日10:00

                  

                地点:腾讯会议 635 745 397

                  

                举办单位:数理学院

                  

                主讲人介绍:连增,四川大学数学学院教授。国家自然科学基金委员会“杰出青年基金”获得者。美国纽约大学库朗研究所博士后,美国杨百翰大学数学博士,南开大学数学与应用数学学士。主要从事基础数学领域的研究,其研究主要集中在动力系统和遍历理论方向,具体内容包括随机或无穷维动力系统的光滑遍历理论、混沌理论和遍历极值问题等。曾在国际著名数学刊物上发表研究论文,包括Journal  of The American Mathematical Society,Memoirs of The of American Mathematical  Society,Advances in Mathematics, Journal of Differential Equations等。

                  

                内容介绍:In this talk, we will report some recent progress of the study on chaotic  behavior of hyperbolic dynamical systems, which mainly contains two parts:  (1)Existence of periodic orbits and Smale horseshoes; (2) Ergodic optimization  theory. This is based on the joint works with Wen Huang, Kening Lu, Xiao Ma,  Leiye Xu, Lai-sang Young, and Yiwei Zhang.